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Robust skill of decadal climate predictions
D. M. Smith 1, R. Eade1, A. A. Scaife 1,2, L.-P. Caron3, G. Danabasoglu4, T. M. DelSole5, T. Delworth6, F. J. Doblas-Reyes3,7,
N. J. Dunstone1, L. Hermanson 1, V. Kharin8, M. Kimoto9, W. J. Merryfield8, T. Mochizuki10, W. A. Müller11, H. Pohlmann11,
S. Yeager 4 and X. Yang6

There is a growing need for skilful predictions of climate up to a decade ahead. Decadal climate predictions show high skill for
surface temperature, but confidence in forecasts of precipitation and atmospheric circulation is much lower. Recent advances in
seasonal and annual prediction show that the signal-to-noise ratio can be too small in climate models, requiring a very large
ensemble to extract the predictable signal. Here, we reassess decadal prediction skill using a much larger ensemble than previously
available, and reveal significant skill for precipitation over land and atmospheric circulation, in addition to surface temperature. We
further propose a more powerful approach than used previously to evaluate the benefit of initialisation with observations,
improving our understanding of the sources of skill. Our results show that decadal climate is more predictable than previously
thought and will aid society to prepare for, and adapt to, ongoing climate variability and change.
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INTRODUCTION
Human society and natural ecosystems are vulnerable to climate
variability and change,1 which impacts food security, freshwater
availability, spread of pests and diseases, heat waves, droughts,
floods, cyclones, wildfires, energy supply and demand, transport,
migration and conflict. There is, therefore, an urgent, and growing,
need for climate information2–4 to inform the World Meteorolo-
gical Organisation’s Global Framework for Climate Services5 and
support the United Nations Sustainable Development Goals6 and
the Sendai framework for disaster risk reduction.7

For climate information to be useful it should be credible.8,9

Many planners are particularly interested in the coming decade,10

and there is an increasing need for decadal climate predictions.4,11

An important advantage of decadal climate predictions compared
to centennial climate projections is that their credibility can be
assessed by performing retrospective forecasts (also known as
hindcasts) of the historical period and comparing them against
subsequent observations. Although previous assessments have
shown high skill in decadal forecasts of surface temperature,
confidence in predictions of precipitation and atmospheric
circulation, which are vital for many climate impacts, is much
lower.4,12–17 However, recent developments in seasonal forecast-
ing have highlighted the need for very large ensembles to achieve
skilful predictions especially for precipitation and atmospheric
circulation.18–23 Here we take advantage of these developments to
reassess decadal prediction skill using a larger multi-model
ensemble than was previously available. We also propose a new
approach for identifying the sources of skill in order to gain further
confidence in forecasts.

RESULTS
The signal-to-noise paradox
Although individual weather events cannot be predicted more
than a couple of weeks ahead, slowly varying predictable
components of the climate system, including ocean variability
and changes in radiative forcing from greenhouse gases, aerosols
and solar variations, influence the frequency, duration and
intensity of weather events over the coming seasons to years.
Hence some aspects of climate, for example, multi-year atmo-
spheric circulation changes,24,25 the frequency of extreme weather
events26 and total amounts of rainfall,27 are potentially predictable
over the coming decade. Such forecasts will not be perfectly
deterministic because uncertainties are inevitable due to the
chaotic nature of the atmosphere, and errors will be introduced by
imperfect climate models and imperfect knowledge of the initial
state of the climate system. Taking the mean of an ensemble of
forecasts reduces these uncertainties, since the different ensemble
members sample different realisations of chaotic variability and, to
some extent, uncertainties in the initial conditions and model
formulation if different climate models are included. Ensemble
averaging reduces the unpredictable noise to reveal the
predictable signal in the models. The level of skill, and hence
the usefulness of forecasts, depends on the magnitude of the
predictable signal relative to the unpredictable noise (the signal-
to-noise ratio).28

Recent studies of seasonal and annual forecasts have revealed
that the signal-to-noise ratio can be far larger in observations than
in climate models.18–21,23,29 This results in the surprising situation,
referred to as the signal-to-noise paradox,20,21,30 where a climate
model can predict the real world better than itself despite being
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an imperfect representation of the real world and a perfect
representation of itself. Although this highlights a clear deficiency
in climate models it also provides an opportunity to create skilful
forecasts even with imperfect models by taking the mean of a very
large ensemble in order to extract the predictable signal. Where
the model signal-to-noise ratio is too small, the number of
ensemble members needed to remove the noise and extract the
signal will be larger than it would be if the signal-to-noise ratio
were correct, and the amplitude of the resulting model
predictable signal will be too small. Nevertheless, the ensemble
mean signal may be highly skilful if it correlates with the observed
variability, and its magnitude can be adjusted in a post-processing
step to produce realistic forecasts.19,29,31,32

If the signal-to-noise paradox applies to decadal predictions
then previous studies12–17 may have underestimated the skill. This
is because the ensemble size may have been too small to remove
the noise, or the skill measure used may have penalised errors in
the magnitude of the predicted signal which could potentially be
corrected before issuing forecasts. Indeed, averaging over many
hindcast start dates to increase the ensemble size shows that
decadal predictions capture many aspects of observed changes
associated with large variations in the north Atlantic,33,34 and
recent results with a large ensemble from one model show
significant skill for predicting rainfall over land in some regions.35

We, therefore, reassess decadal prediction skill using a larger
ensemble than was previously available, and focussing on
anomaly correlation which is insensitive to errors in the
magnitude of variability. In order to reduce modelling and initial
condition uncertainties, we use multi-model hindcasts that start
every year from 1960 to 2005 from the 5th Coupled Model
Intercomparison Project (CMIP536) supplemented by three addi-
tional state-of-the-art decadal predictions systems to provide a
total of 71 ensemble members from seven different climate
models (Table 1, Methods). For the reasons above, we assess the
correlation skill of the ensemble mean, for near-surface tempera-
ture, precipitation and mean sea level pressure. We average over
forecast years 2–9 in order to avoid seasonal to annual
predictability and focus specifically on decadal timescales (see
Methods).
We illustrate our approach by first considering the North

Atlantic Oscillation (NAO) for which seasonal to annual forecasts
are clearly affected by the signal-to-noise paradox.18–20,23,29 The
observed time-series of annual 8-year running mean NAO (black
curve in Fig. 1a) is characterised by an increase from the 1960s
reaching a peak for the period 1988–1994 (trend= 0.87 hPa/
decade, p < 0.01) and a decrease thereafter (trend=−0.77 hPa/
decade, p < 0.01). The model forecasts (red curve in Fig. 1a) also

show an increase from the 1960s peaking for the period
1988–1994 (trend= 0.13 hPa/decade, p < 0.01), though the
decrease thereafter is not significant (trend=−0.02 hPa/decade,
p= 0.62). The agreement between the timing of observed and
forecast variability results in a highly significant correlation skill
(Fig. 1a inset, correlation r= 0.49, p= 0.02 allowing for auto-
correlation in the time-series, see Methods). However, the model
forecasts underestimate the observed amplitude of variability
(note the different axes for the observations and models in Fig.
1a), and skill measured by the mean-squared-skill-score (MSSS14) is
positive but not significant (MSSS= 0.17, p= 0.30).
The discrepancy in significance between correlation and MSSS

skill measures arises because the modelled signal-to-noise ratio is
too small: the models capture the phase of observed variability
reasonably well but MSSS is sensitive to errors in the amplitude.
This is confirmed in Fig. 1b which shows that the correlation is far
higher for predicting the observations (red curve) than for
predicting an individual model member (blue curve). Hence the
predictable fraction of the total variability is larger in the real
world than in the models. This behaviour is also found in seasonal
and annual forecasts,18,20,23 and shows that the signal-to-noise
paradox also applies to decadal forecasts of the NAO. Note also
that the correlation increases slowly with ensemble size (red
curve) confirming the need for large ensembles to obtain robust
estimates of skill. Indeed, even with 71 members the forecasts are
noisy (showing large inter-annual variability in overlapping 8 year
periods, Fig. 1a red curve) and the correlation is still increasing,
suggesting that higher skill would be achieved with an even larger
ensemble. Indeed, a simple theoretical fit18,37 suggests the
correlation could exceed 0.6 for an infinite ensemble.
The signal-to-noise paradox can be quantified by computing

the ratio of predictable components (RPC) between observations
and models.19,29,30 Since the correlation squared is the fraction of
variance that is predictable, the RPC can be computed as the
correlation skill for predicting the observations divided by the
average correlation skill for predicting individual model members
(where the square root has been taken for convenience). The
expected value of the rpc should equal one for a perfect
forecasting system; values greater than one are symptomatic of
the signal-to-noise paradox where the real world is more
predictable than models. The RPC for decadal predictions of the
NAO is 6, compared to 2 or 3 for seasonal and annual
timescales.19,20,23 Although some of this difference might arise
from our use of a multi-model ensemble, our results clearly
highlight the need for large ensembles to obtain robust estimates
of skill. This conclusion is further strengthened by maps of RPC for
temperature, precipitation and pressure (Fig. 1c–e) which show

Table 1. Forecast systems and ensemble sizes

Forecast Centre Model Initialised
ensemble size

Uninitialized
ensemble size

References

Barcelona Supercomputing Center, Spain EC-EARTH 5 10 89,90

Canadian Centre for Climate Modelling and Analysis, Environment and Climate
Change Canada

CANCM4 10 10 91

Geophysical Fluid Dynamics Laboratory, USA CM2 10 10 92

Met Office Hadley Centre, UK HADCM3 (ANOMALY

INITIALISATION)
10 93

Met Office Hadley Centre, UK HADCM3 (FULL FIELD

INITIALISATION)
10 10 93

University of Tokyo, National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology, Japan

MIROC5 6 3 (1 for precipitation
and MSLP)

94,95

Max Planck Institute for Meteorology, Germany MPI-ESM-LR 10 3 96

National Center for Atmospheric Research, USA CESM1.1 10 10 35

Total 71 56 (54 for
precipitation
and MSLP)
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that the signal-to-noise paradox is widespread in decadal
predictions, and generally larger for precipitation and pressure
than for temperature.

Assessing the impact of initialisation
Decadal variations in climate can occur through internal variability
of the climate system (the atmosphere, oceans, land and
cryosphere), but they are also influenced by radiative changes
from external factors, including greenhouse gases, aerosols
(volcanic and anthropogenic) and solar variability.38 Climate
projections39 aim to simulate the response to external factors,
but cannot predict internal variability because the modelled
internal variability is not aligned, on average, with that of the real
world. In contrast, decadal predictions are initialised with
observations of the ocean and the atmosphere, thereby aligning
internal variability with reality and enabling some aspects of
internal variability to be predicted. It is important to note that
initialisation may also improve the response to external factors
where these leave fingerprints, especially in the ocean, that are
imperfectly simulated by models but can be corrected with
observations. For example, if the NAO response to solar variability
and/or volcanic eruptions is too weak in model simulations30 then
their impacts on the ocean circulation will likely be too weak.
Initialisation with observations would correct these fingerprints
thereby improving skill. Hence, differences between initialised
predictions and uninitialized simulations cannot necessarily be
attributed to internal variability. Nevertheless, assessing the
impact of initialisation provides valuable information on whether

skill is dominated by external factors or whether internal variability
could be playing a role, thereby highlighting the most important
factors to be considered in order to reduce uncertainties in
forecasts.
Previous studies have found fairly limited improvements from

initialisation, mainly in the North Atlantic with little impact over
land.12–15,17,24 However, the methods for comparing skill were not
optimal resulting in a lack of power in the significance test and an
underestimation of the impact of initialisation. The power of a
significance test is defined as the probability that it will correctly
detect a real signal, and depends largely on the size of the signal
being tested,40–42 referred to as the effect size. Previous studies
have assessed simple differences (or ratios) of skill, but this
approach does not maximise the effect size when part of the skill
is common to both sets of forecasts. For example, the global
warming trend can lead to high anomaly correlations for both
initialised forecasts and uninitialized simulations, with very little
difference between them and hence a small effect size and low
power of the significance test (see example below). This common
signal introduces a bias that is not taken into account in standard
significance tests and diminishes their power.43,44 In order to
increase the effect size we directly test whether initialisation
predicts any of the observed variability that is not already
captured by the uninitialized simulations. Specifically, we create
residual forecast and observed time-series by removing, via linear
regression, the uninitialized ensemble mean from the initialised
and observed time-series respectively. We then test whether these
residuals are significantly correlated (see Methods, noting the
adjustment needed to avoid introducing a bias). By construction,

Fig. 1 The signal-to-noise paradox. a Time series of observed (black curve with red/blue shading showing positive/negative values) and
model ensemble mean (years 2–9, red curve) 8-year running mean annual NAO index. Note different scales for observations (± 2hPa, left axis)
and model ((± 0.4hPa, right axis). Inset shows the skill measured by MSSS and anomaly correlation (circles show the skill of the ensemble
mean, whiskers show the 5–95% uncertainty range, see Methods). Straight lines show trends before and after the observed peak. b Anomaly
correlation as a function of ensemble size for model ensemble mean forecasts of the observations (red curve with 5–95% confidence interval
shaded, see Methods) and for model ensemble forecasts of an independent ensemble member (blue curve, averaged over all possible
combinations). c–e The ratio of predictable components (RPC19) between observations and models for year 2–9 forecasts of near-surface
temperature, precipitation and mean sea level pressure. RPC values significantly greater than one are stippled (crosses and circles show 90
and 95% confidence intervals, respectively). The NAO is calculated20 as the difference in pressure between two small boxes located around
the Azores ([28–20°W, 36–40°N]) and Iceland ([25–16°W, 63–70N°])
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the residuals contain the variability in the observations and
initialised predictions that is independent of the uninitialized
simulations. Hence, their correlation is potentially much larger
than the difference in correlation between initialised and
uninitialized forecasts that contain common signals. By increasing
the effect size our approach provides a more powerful assessment
of the impact of initialisation, as demonstrated below.
We illustrate our approach with predictions of boreal summer

(JJA, the average of June, July and August over forecast years 2–9)
temperature in the sub-polar North Atlantic (SPNA). For the whole
year this region shows a robust benefit from initialisation,45 but
this is less clear for JJA (Fig. 2a). Both initialised and uninitialized
forecasts capture the overall warming trend and are highly
correlated with the observations (r= 0.98 and 0.95, respectively)
but the benefit of initialisation is not detected by the difference in
correlation which is small and not significant (Fig. 2a inset, r=
0.03, p= 0.29). However, observations and initialised forecasts are
cooler than the uninitialized simulations in the late 1960s to early
1990s and warmer in other periods resulting in a significant
correlation between residuals (Fig. 2b, r= 0.69, p= 0.05) and a
clear improvement from initialisation. Furthermore, expanding our
analysis to the whole globe shows that the enhanced power
obtained by testing residuals reveals significant benefits from
initialisation in many regions that are not seen by a simple
difference in correlations (compare Fig. 2c, d), including over land
in western Europe, western Africa and the Middle East.

Robust skill of decadal predictions
We now provide new estimates of decadal prediction skill
together with the impact of initialisation (Fig. 3). The impact of

initialisation depends on both the skill of predicting the residuals
and the fraction of the total variability that they represent. We,
therefore, rescale the correlation between residuals (see Methods)
and present the impact of initialisation as the ratio of predicted
signal arising from initialisation divided by the total predicted
signal (Fig. 3b, d, f).
Our results provide robust evidence of decadal prediction skill

for precipitation and pressure in addition to temperature (Fig. 3a,
c, e). Temperature shows high skill almost everywhere, the main
exceptions being the north-east Pacific and parts of the Southern
Ocean. Precipitation shows reasonable skill (r > 0.6) in the Sahel
and in a broad band across northern Europe and Eurasia, with
lower but significant skill in parts of North and South America and
the Maritime Continent. Pressure is also significantly skilful in most
regions, the main exceptions being the eastern South Atlantic and
western Indian Oceans, Africa and parts of Eurasia and the
Southern Ocean.
In agreement with previous studies,12–15,17,24 temperature skill is

particularly improved by initialisation in the SPNA and the Drake
Passage region (Fig. 3b). However, we also find significant
improvements over the western Indian Ocean, tropical and
eastern Atlantic, and land regions including Europe, the Middle
East and Africa. Initialisation significantly improves precipitation
skill over the Sahel and western Amazon (Fig. 3d), but contributes
little to the band of skill across northern Europe and Eurasia. Sea
level pressure is mainly improved by initialisation in the North
Atlantic (including both the Iceland and Azores nodes of the NAO,
Fig. 1), north-east Europe and parts of the Southern Ocean (Fig. 3f).
A detrimental impact of initialisation in the eastern South Atlantic
and western Indian Oceans and northern Africa warrants further

Fig. 2 The impact of initialisation. a Time series of observed (black curve) and initialised model ensemble mean (years 2–9, red curve) 8-year
running mean boreal summer (JJA) sub-polar North Atlantic (SPNA) temperature. Ensemble mean uninitialized simulations are also shown
(blue curve), and times when the observations are warmer/cooler than these are highlighted with red/blue shading. Inset shows the impact of
initialisation measured by the difference in anomaly correlation. (b) As (a) but for the residual after linearly removing the ensemble mean
uninitialized simulation from the observations and initialised forecasts (see Methods). Inset shows the impact of initialisation measured by the
correlation between residuals. In both insets, circles show the ensemble mean, whiskers show the 5–95% uncertainty range (see Methods). c
Global maps of the impact of initialisation measured by the difference between initialised and uninitialized correlation skill for years 2–9 JJA
near-surface temperature. d As (c) but measured by the correlation between residuals. Stippling in (c) and (d) highlights significant values
(crosses and circles show 90 and 95% confidence intervals, respectively), and green boxes show the SPNA region (60-10°W, 50–65°N)
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investigation given the significant improvement in temperature
skill in these regions, suggesting that the relationship between
surface temperature and atmospheric circulation anomalies is not
simulated correctly by the initialised hindcasts.46

Regional predictions
Having established significant skill for decadal predictions of
temperature, precipitation and pressure, we now investigate their
ability to predict regional patterns. A key goal is to predict decadal
variability in the Atlantic and Pacific, referred to here as Atlantic
Multidecadal Variability (AMV, also known as the Atlantic Multi-
decadal Oscillation, AMO) and Pacific Decadal Variability (PDV, also
referred to as the Pacific Decadal Oscillation, PDO, or the
Interdecadal Pacific Oscillation, IPO). AMV switched from cool to

warm conditions around 1995,45 with some evidence for a recent
return to cool conditions.47–49 PDV switched to warm conditions
around 1976, back to cool conditions around 1998, with some
evidence for recent warm conditions.50 AMV (PDV) was warm
(cool) during 1998–2014 and cool (warm) during 1978–1994 such
that the difference between these periods summarises many
aspects of decadal predictions, including predictions of AMV, PDV,
greenhouse gas warming, and associated climate impacts. As
noted above, the magnitude of forecast anomalies must be
adjusted if the signal-to-noise ratio is incorrect. Although several
objective methods have been proposed19,29,31,32 further work is
needed to establish the best approach. We, therefore, follow the
previous studies18,20,21 and simply compare forecasts and
observations using standardised anomalies (Fig. 4).

Fig. 3 Robust skill of decadal predictions. a Correlation between year 2–9 initialised ensemble mean forecasts and observations for near-
surface temperature. b The impact of initialisation computed as the ratio of predicted signal arising from initialisation divided by the total
predicted signal (where positive/negative values show improved/reduced skill, see Methods). c, d As (a, b) but for precipitation. e, f As (a, b)
but for mean sea level pressure. Stippling shows where correlations with observations (a, c, e) and of residuals (b, d, f) are significant (crosses
and circles show 90 and 95% confidence intervals, respectively)
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Temperature differences between these periods are dominated
by the global warming trend, which masks regional differences
related to atmospheric circulation anomalies. To highlight regional
patterns we remove the global average temperature from each 8
year period before computing temperature differences (Fig. 4a, b).
This clearly highlights enhanced Arctic warming and greater
warming over land than sea, which are robust patterns expected
with global warming39,51–53 and are well captured by the
predictions. The decadal predictions also capture the warm AMV,
especially in the SPNA consistent with previous studies,54–57

although the relative warming in the tropical Atlantic is not
captured. A negative PDV pattern is evident in the observations,
seen as relatively cool conditions in the eastern tropical Pacific
surrounded by a horse-shoe of warming to the west, north and
south. The decadal predictions show some aspects of this pattern
in the north Pacific but relative warming in the west and south
Pacific is not captured. The PDV pattern is only partially simulated,
and further work is needed to reconcile generally low skill for
predicting PDV58,59 with an apparent ability to predict phase

transitions.60 Both predictions and observations show relatively
cool conditions over most of the Southern Ocean and Antarctica,
but the observed warming west of the Antarctic Peninsula is not
captured by the predictions which instead show warming
further east.
Decadal predictions capture many aspects of the observed

precipitation changes (Fig. 4c, d) including wetter conditions in
the Sahel, north-west South America, the Maritime Continent and
across northern Europe and Eurasia, and drier conditions in South
America and south-west USA. Many of these changes in land
precipitation appear to be part of large scale patterns extending
over the ocean, including a northward shift of the Atlantic
Intertropical Convergence Zone (ITCZ) consistent with warm
AMV27,47,57,61,62 and an expansion of the Hadley circulation63

which is expected as climate warms.64 However, drier conditions
in parts of Asia, the Middle East and East Africa are not captured
by the predictions.
Predicted changes in pressure are clearly anti-correlated with

temperature suggesting a heat low response to greater warming

Fig. 4 Predicting regional patterns. a Composite difference between initialised year 2–9 temperature forecasts verifying during the periods
1998–2014 and 1978–1994. b As (a) but for the verifying observations. (c, d) As (a, b) but for precipitation. (e, f) As (a, b) but for mean sea level
pressure. For each 8-year mean forecast period (years 2–9), observed and ensemble mean forecast anomalies were standardised at each grid
point by dividing by their respective standard deviations before making composites. For temperature only, we first remove the global average
from each grid point before standardising in order to accentuate regional patterns that are more likely to drive circulation changes than
would globally uniform warming. Units are standard deviations of 8-year means. Stippling shows where the predictions and observations are
significantly different (95% confidence)
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(hence lower pressure) over land than ocean (Fig. 4a, e). This
pattern is also evident in the observations (Fig. 4f), especially over
the Pacific and North and South America. However, in contrast to
the predictions, observed pressure increased in the SPNA, Europe,
Asia and northern Africa, and reduced in the Indian Ocean. The
predictions also do not capture low pressure in the western Pacific
where warming is underestimated. Reduced pressure over the
Southern Ocean is seen in both predictions and observations,
consistent with an increase in the Southern Annular Mode driven
by increased greenhouse gases and reduced Antarctic ozone,65

although the predictions are zonal and do not capture regions of
low pressure to the west of Africa and Australia. The ridge of high
pressure extending north-east from the Caribbean is captured,
along with reduced pressure in the subtropical North Atlantic
consistent with a northward shift of the ITCZ.

DISCUSSION
Our results show that the signal-to-noise paradox, in which the
small predictable signal in climate model ensembles is incon-
sistent with their high level of agreement with observations, is
widespread in multi-model decadal predictions, especially for
precipitation and mean sea level pressure. This highlights a clear
deficiency in climate models that urgently needs to be addressed.
However, it also provides an opportunity to make skilful forecasts
with existing models by extracting the signal from the mean of a
very large ensemble and adjusting its variance. Using a larger
multi-model ensemble than was previously available we demon-
strate significant decadal prediction skill for precipitation and
atmospheric circulation in addition to surface temperature.
Understanding the sources of skill is important for reducing

uncertainties in forecasts. We propose a new approach for

Fig. 5 Role of external forcing. a Correlation between ensemble mean uninitialized simulations and observations for near-surface
temperature. b As (a) but after linearly detrending both observations and simulations. c, d As (a, b) but for precipitation. e, f As (a, b) but for
mean sea level pressure. Correlations are computed for the same 8 year periods used to assess the initialised predictions (Fig. 3). Stippling in
(a, c, e) shows where initialised predictions are more skilful, and in (b, d, f) where correlations are significant (crosses and circles show 90 and
95% confidence intervals, respectively)
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diagnosing the impact of initialisation that is more powerful than
those used previously. This reveals significant benefits of
initialisation including for temperature over Europe, Sahel rainfall,
and north Atlantic pressure. However, the overall patterns of skill
for temperature, precipitation and pressure are largely captured
by the uninitialized simulations (compare Figs. 3a, c, e and 5), and
improvements from initialisation generally occur in regions where
the uninitialized simulations already have some skill. This could
arise because: (1) improved skill arises from predicting internal
variability in regions where there is an externally forced response;
(2) externally forced skill in these regions is largely incidental66

and skill in initialised predictions arises mainly from internal
variability; (3) the variability is predominantly externally forced
and improved skill arises from correcting the modelled response
to external factors. The first situation is particularly expected
where there is a long term trend driven by slow variations in
greenhouse gases. However, uninitialized simulations also capture
aspects of the variability around the linear trend (Fig. 5b, d, f),
highlighting the need for improved understanding of the roles of
other external factors, including solar variations67–69 and volca-
nic70–73 and anthropogenic aerosols.74–80

We show that decadal predictions are able to capture many
aspects of regional changes, including precipitation over land and
atmospheric circulation in addition to surface temperature. There
are also several differences between the forecasts and observa-
tions, and further work is needed to assess whether these are due
to internal variability that was not predicted, incorrect responses
to external factors or artefacts of initialisation. Nevertheless, the
levels of skill are encouraging overall and support the recent
establishment of operational decadal climate predictions
endorsed by the World Meteorological Organization (WMO),
building on the informal forecast exchange that has been running
since 2010.81 The Decadal Climate Prediction Project17 contribu-
tion to CMIP6 will also provide ongoing forecasts with improved
models and an even larger multi-model ensemble than used here.
The World Climate Research Program (WCRP) Grand Challenge on
Near Term Climate Prediction recently set out the case for
operational decadal predictions4 including an Annual to Decadal
Climate Update to be produced each year as an important first
step towards operational services. Such information promises to
benefit society by informing preparedness for, and adaptation to,
near-term climate variability and change.

METHODS
Observations and models
Near-surface temperature observations are computed as the average from
HadCRUT4,82 NASA-GISS83 and NCDC.84 Precipitation observations are
taken from GPCC85 and mean sea level pressure from HadSLP2.86 We
assess a large multi-model ensemble (71 members, Table 1) of decadal
predictions from seven forecast centres using hindcasts starting each year
from 1960 to 2005 following the Coupled Model Intercomparison Project
phase 5 (CMIP5) protocol.36 To assess the impact of initialisation we
compare with an ensemble of uninitialized simulations (up to 56 members)
that use the same climate models. We create ensemble means by taking
the unweighted average of all ensemble members and assess rolling 8-
year means defined by calendar years 2 to 9 from each start date of the
initialised predictions. The forecasting systems start between 1st of
November and January each year, giving a lead time of at least a year
before the assessed forecast period to focus on decadal timescales and
avoid skill arising from seasonal to annual variability. Both observations
and models were interpolated to a 5° longitude by 5° latitude grid before
comparison.

Impact of initialisation
We decompose the observed (o) and ensemble mean initialised forecast (f)
anomaly time-series as

o ¼ ôþ o0

f ¼ f̂ þ f 0

where ô and f̂ are the components that can be linearly explained by
regression with the ensemble mean of the uninitialized simulations

ô ¼ rou
σo
σu
u

f̂ ¼ rfu
σf
σu
u

where u is the uninitialized ensemble mean, σu, σf and σo are the standard
deviations of u, f and o, and rou and rfu are the correlations between o and
u and between f and u respectively.
The residuals o′ and f′ represent the variability that cannot be captured

by the uninitialized simulations and their correlation (r′, also referred to as
the partial correlation87) measures the impact of initialisation. Because the
skill of f and u can be dominated by a common component (such as the
global warming trend), r′ is potentially much greater than the difference in
skill, thereby increasing the effect size and increasing the power of the
test.40–42

It is important to note that errors in estimates of ô and f̂ arising from a
finite ensemble size of u can produce a positive bias in r′. An unbiased
estimate can be obtained by using independent estimates of u to obtain ô
and f̂ separately. We do this by dividing the uninitialized ensemble into
two independent halves and then estimate the bias by comparing biased
and unbiased estimates of r′. This process is repeated using the block
bootstrap approach describe below, from which we compute the median
bias. We find the bias to be small (of order 10%) and remove it from the
values computed for the full ensemble. Hence, our approach extends that
used previously to compare seasonal forecasts from different models.87

The residuals could be highly correlated but represent only a small
fraction of the predictable signal. We, therefore, present the impact of
initialisation as the ratio of the predicted signal arising from initialisation
divided by the total predicted signal, computed as r0σ0o

rσo
where r is the total

skill (the correlation between f and o), and σ0o is the standard deviation of o′.

Significance
For a given set of validation cases, we test for values that are unlikely to be
accounted for by uncertainties arising from a finite ensemble size (E) and a
finite number of validation points (T). This is achieved using a non-
parametric block bootstrap approach,14,88 in which an additional 1000
hindcasts (or pairs of hindcasts for assessing skill differences) are created as
follows:

1. Randomly sample with replacement T validation cases. In order to
take autocorrelation into account this is done in blocks of 5
consecutive cases.

2. For each of these, randomly sample with replacement E ensemble
members.

3. Compute the required statistic for the ensemble mean (e.g.,
correlation, difference in correlation, partial correlation, RPC).

4. Repeat from (1) 1000 times to create a probability distribution (PDF).
5. Obtain the significance level based on a 2-tailed test of the

hypothesis that skill (or skill difference) is zero, or RPC is one.

For skill as a function of ensemble size (Fig. 1b) we randomly sample
without replacement to obtain the required number of ensemble
members, and compute the average from 1000 repetitions. Uncertainties
(pink shading) are computed based on single members since the samples
are not independent for larger ensembles leading to an underestimated
ranges.
Uncertainties in composite differences (Fig. 4) are computed using a

standard t-test of the difference between two means.
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